script_OrientationInversePoleFigure edit page

Inverse Pole Figure

Inverse pole figures are two dimensional representations of orientations. To illustrate this we define a random orientation with trigonal crystal symmetry

cs = crystalSymmetry('321')
ori = orientation.rand(cs)
cs = crystalSymmetry
 
  symmetry       : 321               
  elements       : 6                 
  a, b, c        : 1, 1, 1           
  reference frame: X||a*, Y||b, Z||c*
 
 
ori = orientation (321 → xyz)
 
  Bunge Euler angles in degree
     phi1     Phi    phi2    Inv.
  359.422 162.975 140.417       0

Starting point is a fixed specimen direction r, e.g.,

% the fixed crystal directions z
r = vector3d.Z
r = vector3d
  x y z
  0 0 1

Next the crystal direction corresponding to the specimen direction r according to the orientation r are computed

h = inv(ori) * r
h = Miller (321)
       h       k       i       l
  0.2744 -0.2257 -0.0487 -0.9562

and ploted in a spherical projection

plot(h.symmetrise,'fundamentalRegion')

A shortcut for the above computations is the command

% a pole figure plot
plotIPDF(ori,[vector3d.X,vector3d.Y,vector3d.Z])

Contour plots

plotIPDF(ori,[vector3d.X,vector3d.Y,vector3d.Z],'contourf')
mtexColorbar
plotIPDF(ori,[vector3d.X,vector3d.Y,vector3d.Z],'contourf','complete','upper')
mtexColorbar