In this section we discuss a stereographic approach of determining the grain boundary normal distribution from two dimensional EBSD data following the publications
- D.M. Saylor, G.S. Rohrer: Determining crystal habits from observations of planar sections in J. Am. Ceram. Soc., 85(11):2799–2804, 2002.
- R. Hielscher, R. Kilian, K. Marquardt, E. Wünsche: Efficient computation of the grain boundary normal distribution from two dimensional EBSD data, not yet published.
We start our demonstration by importing some EBSD data and reconstructing the grain structure.
mtexdata csl
[grains,ebsd.grainId] = calcGrains(ebsd);
grains = smooth(grains,10)
plot(ebsd,ebsd.orientations)
hold on
plot(grains.boundary,'lineWidth',2)
hold off
ebsd = EBSD
Phase Orientations Mineral Color Symmetry Crystal reference frame
-1 154107 (100%) iron LightSkyBlue m-3m
Properties: ci, error, iq
Scan unit : um
X x Y x Z : [0 511] x [0 300] x [0 0]
Normal vector: (0,0,1)
grains = grain2d
Phase Grains Pixels Mineral Symmetry Crystal reference frame
-1 885 154107 iron m-3m
boundary segments: 23579 (17770 µm)
inner boundary segments: 93 (67 µm)
triple points: 1451
Properties: meanRotation, GOS

Misorientation angle at grain boundaries
Next we separate the grain boundaries according to the misorientation angle. More precisely, we distinguish those grain boundaries with misorientation angle larger then 57 degree and those with a smaller misorientation angle.
gB = grains.boundary('indexed');
cond = gB.misorientation.angle > 57 * degree;
plot(ebsd,ebsd.orientations)
hold on
plot(grains.boundary,'lineWidth',2)
plot(gB(cond),'lineWidth',2,'lineColor','w')
hold off

Using the command calcGBPD
we can now compute the grain boundary plane distribution from a list of two dimensional traces.
gbnd1 = calcGBPD(gB(cond),ebsd)
gbnd2 = calcGBPD(gB(~cond),ebsd)
contourf(gbnd1,'colorrange',[0.8 1.5])
mtexTitle('GBPD for misorientation angle \(> 57^{\circ}\)')
mtexColorMap parula
nextAxis
contourf(gbnd2,'colorrange',[0.8 1.5])
mtexTitle('GBPD for misorientation angle \(< 57^{\circ}\)')
mtexColorMap parula
mtexColorbar
gbnd1 = S2FunHarmonicSym (iron)
bandwidth: 48
antipodal: true
isReal: true
gbnd2 = S2FunHarmonicSym (iron)
bandwidth: 48
antipodal: true
isReal: true

We observe that for a twinning grain boundaries the boundary plane is mostly parallel to the (111) plane, while for all other grain boundaries no preferred boundary plane exists.