S2FunHarmonic.evalEquispacedFFT edit page

Evaluate an S2FunHarmonic on an equispaced grid in spherical coordinates \[(\theta_a,\rho_b) = (\frac{\pi a}{Htheta-1},\frac{2\pi b}{Hrho})\] where \(a=0,...,Htheta-1\) and \(b=0,...,Hrho-1\).

Therefore we transform the Harmonic series to an ordinary Fourier series equivalent as in the function eval. Afterwards, we use an equispaced FFT instead of the NFFT.

Syntax

f = evalEquispacedFFT(sF,v)

Input

sF S2FunHarmonic
v quadratureS2Grid - 'ClenshawCurtis'

Output

f values at this grid points

Example

construct quadrature grid and evaluate there. Output will be a unique part of this grid

sF = S2FunHarmonic.smiley;
v = quadratureS2Grid(100,'ClenshawCurtis');
f = evalEquispacedFFT(sF,v);

for big grid sizes the construction of the quadrature grid is memory expansive. Hence construct a struct, but the output is full sized

v = struct('scheme','ClenshawCurtis','bandwidth',1500)
f = evalEquispacedFFT(sF,v);
v = 
  struct with fields:

       scheme: 'ClenshawCurtis'
    bandwidth: 1500

See also

S2FunHarmonic.eval S2FunHarmonic.evalNFSFT