Evaluate an SO3FunHarmonic on an equispaced grid in Euler angles \[(\alpha_a,\beta_b,\gamma_c) = (\frac{2\pi a}{H_1},\frac{\pi b}{H_2-1},\frac{2\pi c}{H_3})\] where \(a=0,...,H_1-1\), \(b=0,...,H_2-1\) and \(c=0,...,H_3-1\).
Therefore we transform the SO(3) Fourier series to an usual Fourier series equivalent as in the function evalV2
. But we use an equispaced FFT instead of the NFFT.
Syntax
f = evalEquispacedFFT(SO3F)
f = evalEquispacedFFT(SO3F,'GridPointNum',30)
f = evalEquispacedFFT(SO3F,'resolution',2.5*degree)
[f,nodes] = evalEquispacedFFT(SO3F,'GridPointNum',[20,30,40])
Input
SO3F | SO3FunHarmonic |
Output
f | values at this grid points |
nodes | orientation |
See also
SO3FunHarmonic.evalV2 SO3FunHarmonic.evalSectionsEquispacedFFT SO3FunHarmonic.eval