global, local and pointwise maxima of functions on SO(3)
Syntax
[v,pos] = max(SO3F) % the position where the maximum is atained[v,pos] = max(SO3F,'numLocal',5) % the 5 largest local maximaSO3F = max(SO3F, c) % maximum of a rotational functions and a constant
SO3F = max(SO3F1, SO3F2) % maximum of two rotational functions
SO3F = max(SO3F1, SO3F2, 'bandwidth', bw) % specify the new bandwidth% compute the maximum of a multivariate function along dim
SO3F = max(SO3Fmulti,[],dim)Input
| SO3F, SO3F1, SO3F2 | SO3Fun |
| SO3Fmulti | a multivariate SO3Fun |
| c | double |
Output
| v | double |
| pos | rotation / orientation |
Options
| kmax | number of iterations |
| numLocal | number of peaks to return |
| startingNodes | rotation / orientation |
| tolerance | minimum distance between two peaks |
| resolution | minimum step size |
| maxStepSize | maximum step size |
Flags
| gradDescent | use gradient Descent (slower) |
| noNFFT | (together with 'gradDescent') prevent usage of NFFT-methods by direct summation (slow, but computable for very high bandwiths if matlab brokes in other cases) |
Example
%find the local maxima of the <SantaFe.html SantaFe> ODF
[value,ori] = max(SantaFe)
plotPDF(SantaFe,Miller(0,0,1,ori.CS))
annotate(ori)value =
5.0192
ori = orientation (m-3m → y↑→x (222))
Bunge Euler angles in degree
phi1 Phi phi2
153.394 47.5633 244.002