interpolate edit page

Approximate a vector field on the rotation group (SO(3)) in its harmonic representation from some given orientations with corresponding tangent vectors and maybe some noise.

We compute this vector field componentwise, i.e. we compute three SO3FunHarmonics individually by interpolation. So, see SO3FunHarmonic.interpolate for further information.

Syntax

SO3VF = SO3VectorFieldHarmonic.interpolate(nodes,y)
SO3VF = SO3VectorFieldHarmonic.interpolate(nodes,y,'bandwidth',48)
SO3VF = SO3VectorFieldHarmonic.interpolate(nodes,y,'weights','equal')
SO3VF = SO3VectorFieldHarmonic.interpolate(nodes,y,'bandwidth',48,'weights',W,'tol',1e-6,'maxit',200)
SO3VF = SO3VectorFieldHarmonic.interpolate(nodes,y,'regularization',0) % no regularization
SO3VF = SO3VectorFieldHarmonic.interpolate(nodes,y,'regularization',1e-4,'SobolevIndex',2)

Input

nodes rotation
y vector3d

Output

SO3VF SO3VectorFieldHarmonic

Options

bandwidth maximal harmonic degree (Be careful by setting the bandwidth by yourself, since it may yields undersampling)
weights corresponding to the nodes (default: Voronoi weights, 'equal': all nodes are weighted similar, numeric array W: specific weights for every node)
tol tolerance as termination condition for lsqr
maxit maximum number of iterations as termination condition for lsqr
regularization the energy functional of the lsqr solver is regularized by the Sobolev norm of SO3F with regularization parameter lambda (default: 1e-4)(0: no regularization)
SobolevIndex for regularization (default = 2)

See also

rotation.interp SO3FunHarmonic.interpolate