Compute the adjoint S2-Fourier transform of given evaluations on a specific quadrature grid.
This method uses an adjoint bivariate nfft/fft and an adjoint coefficient transform which is based on a representation property of the Wigner-d functions. Hence it do not use the NFSFT (which includes a fast polynom transform) as in the older method S2FunHarmonic.adjointNFSFT.
Syntax
sF = S2FunHarmonic.adjoint(vec,values)
sF = S2FunHarmonic.adjoint(vec,values,'bandwidth',32,'weights',w)Input
| vec | vector3d, quadratureS2Grid, |
| values | double |
Output
| sF | S2FunHarmonic |
Options
| bandwidth | maximal harmonic degree (default: 512) |
| weights | quadrature weights |
Flags
| 'nfsft' | use (mostly slower) NFSFT algorithm |
| 'directComputation' | direct evaluation of Fourier sums (no nfft) |
See also
S2FunHarmonic.quadrature S2FunHarmonic.adjointNFSFT S2FunHarmonic.approximate S2FunHarmonic.interpolate