calcTaylor edit page

compute Taylor factor and strain dependent orientation gradient

Syntax

[MFun,~,spinFun] = calcTaylor(eps,sS,'SO3Fun','bandwidth',32)
[M,b,W] = calcTaylor(eps,sS)

Input

eps strainTensor list in crystal coordinates
sS slipSystem list in crystal coordinates

Output

Mfun SO3FunHarmonic (orientation dependent Taylor factor)
spinFun SO3VectorFieldHarmonic
M taylor factor
b vector of slip rates for all slip systems
W spinTensor

Example

% define 10 percent strain
eps = 0.1 * strainTensor(diag([1 -0.75 -0.25]))
eps = strainTensor (y↑→x)
  type: Lagrange 
  rank: 2 (3 x 3)
 
 *10^-2
   10    0    0
    0 -7.5    0
    0    0 -2.5
% define a crystal orientation
cs = crystalSymmetry('cubic')
ori = orientation.byEuler(0,30*degree,15*degree,cs)
cs = crystalSymmetry
 
  symmetry: m-3m   
  elements: 48     
  a, b, c : 1, 1, 1
 
 
ori = orientation (m-3m → y↑→x)
 
  Bunge Euler angles in degree
  phi1  Phi phi2
     0   30   15
% define a slip system
sS = slipSystem.fcc(cs)
sS = slipSystem (m-3m)
 
  u    v    w  | h    k    l CRSS
  0    1   -1    1    1    1    1
% compute the Taylor factor w.r.t. the given orientation
[M,b,W] = calcTaylor(inv(ori)*eps,sS.symmetrise)
M =
       2.7187
b =
  Columns 1 through 6
   2.1058e-17   1.0668e-16     0.014162     0.033158   9.8911e-17   2.7042e-17
  Columns 7 through 12
     0.019786   1.2948e-16   2.3761e-17    3.156e-17   7.4774e-17     0.020425
  Columns 13 through 18
   4.8778e-17    2.007e-17   4.2509e-17   1.2248e-16     0.034477    0.0092782
  Columns 19 through 24
   2.0953e-17     0.029621   7.1262e-17      0.11096    2.332e-17   7.1768e-17
 
W = spinTensor (m-3m)
  rank: 2 (3 x 3)
 
 *10^-3
      0 -20.77  31.63
  20.77      0 -15.51
 -31.63  15.51      0
% update orientation
oriNew = ori .* orientation(-W)
oriNew = orientation (m-3m → y↑→x)
 
  Bunge Euler angles in degree
     phi1     Phi    phi2
  356.003 29.6499 17.2781