quadrature edit page

Compute the S2-Fourier/harmonic coefficients of an given S2Fun or given evaluations on a specific quadrature grid.

Therefore we obtain the Fourier coefficients with numerical integration (quadrature), i.e. we choose a quadrature scheme of meaningful quadrature nodes \(v_m\) and quadrature weights \(\omega_m\) and compute

\[ \hat f_n^{k} = \int_{S^2} f(v)\, \overline{Y_n^{k}(v)} \mathrm{d}\my(v) \approx \sum_{m=1}^M \omega_m \, f(v_m) \, \overline{Y_n^{k}(v_m)}, \]

for all \(n=0,\dots,N\) and \(k=-n,\dots,n\).

Therefore this method evaluates the given S2Fun on the quadrature grid. Afterwards it uses the adjoint NFSFT (nonequispaced fast spherical Fourier transform) to quickly compute the above sums.

Syntax

sF = S2FunHarmonic.quadrature(nodes,values,'weights',w)
sF = S2FunHarmonic.quadrature(f)
sF = S2FunHarmonic.quadrature(f, 'bandwidth', bandwidth)

Input

values double (first dimension has to be the evaluations)
nodes vector3d
f function handle in vector3d (first dimension has to be the evaluations)

Output

sF S2FunHarmonic

Options

bandwidth minimal degree of the spherical harmonic (default: 128)

See also

S2FunHarmonic.approximate S2FunHarmonic