variants of an orientation relationship
Syntax
ori_parents = ori_child * inv(mori.parents)
Input
mori | child to parent orientation relationship |
ori_child | child orientation |
Output
ori_parents | all possible parent orientation |
Example
% parent symmetry
cs_fcc = crystalSymmetry('m-3m', [3.6599 3.6599 3.6599], 'mineral', 'Iron fcc');
% child symmetry
cs_bcc = crystalSymmetry('m-3m', [2.866 2.866 2.866], 'mineral', 'Iron bcc')
cs_bcc = crystalSymmetry
mineral : Iron bcc
symmetry: m-3m
elements: 48
a, b, c : 2.9, 2.9, 2.9
% define a bcc child orientation
ori_bcc = orientation.goss(cs_bcc)
ori_bcc = orientation (Iron bcc → xyz)
Bunge Euler angles in degree
phi1 Phi phi2 Inv.
0 45 0 0
% define Nishiyama Wassermann fcc to bcc orientation relation ship
NW = orientation.NishiyamaWassermann (cs_fcc,cs_bcc)
NW = misorientation (Iron fcc → Iron bcc)
(111) || (011) [1-10] || [-100]
% compute a fcc parent orientation related to the bcc child orientation
ori_fcc = ori_bcc * NW
ori_fcc = orientation (Iron fcc → xyz)
Bunge Euler angles in degree
phi1 Phi phi2 Inv.
180 54.7356 45 0
% compute all symmetrically possible parent orientations
ori_fcc = unique(ori_bcc.symmetrise * NW)
ori_fcc = orientation (Iron fcc → xyz)
size: 12 x 1
Bunge Euler angles in degree
phi1 Phi phi2 Inv.
83.0827 96.8675 359.584 0
83.0827 83.1325 270.416 0
180 54.7356 45 0
0 144.736 45 0
0 35.2644 225 0
180 125.264 225 0
166.361 45.8193 324.598 0
346.361 45.8193 324.598 0
13.6387 134.181 144.598 0
193.639 134.181 144.598 0
276.917 96.8675 90.4156 0
276.917 83.1325 179.584 0
% same using the function parents
ori_fcc2 = ori_bcc * NW.parents
ori_fcc2 = orientation (Iron fcc → xyz)
size: 1 x 12
Bunge Euler angles in degree
phi1 Phi phi2 Inv.
166.361 45.8193 324.598 0
276.917 83.1325 179.584 0
0 144.736 45 0
180 54.7356 45 0
83.0827 83.1325 270.416 0
83.0827 96.8675 359.584 0
346.361 45.8193 324.598 0
193.639 134.181 144.598 0
180 125.264 225 0
360 35.2644 225 0
276.917 96.8675 90.4156 0
13.6387 134.181 144.598 0