interpolate edit page

Interpolate an S2FunHarmonic by given function values at given points on the sphere.

Let \(M\) spherical points \(v_i\) and corresponding function values \(y_i\) be given. We compute the S2FunHarmonic \(f\) of an specific bandwidth which minimizes the least squares problem

\[\sum_{i=1}^M|f(v_i)-y_i|^2.\]

Syntax

sF = S2FunHarmonic.interpolate(nodes, val)
sF = S2FunHarmonic.interpolate(nodes, val, 'bandwidth', bandwidth, 'tol', TOL, 'maxit', MAXIT, 'weights', W)

Input

nodes vector3d (grid on sphere)
val function values on the grid (may be multidimensional)

Options

bandwidth maximum degree of the spherical harmonics used to approximate the function
tol tolerance for lsqr
maxit maximum number of iterations for lsqr
weights weight w_n for the node nodes (default: Voronoi weights)

See also

vector3d.interp S2VectorFieldHarmonic.interpolate