sort orientations into clusters
[c,center] = doHCluster(ori,'numCluster',n) [c,center] = doHCluster(ori,'maxAngle',omega)
% generate orientation clustered around 5 centers cs = crystalSymmetry('m-3m'); center = orientation.rand(5,cs); odf = unimodalODF(center,'halfwidth',5*degree) ori = odf.discreteSample(3000);
odf = SO3FunRBF (m-3m → xyz) <strong>multimodal components</strong> kernel: de la Vallee Poussin, halfwidth 5° center: 5 orientations Bunge Euler angles in degree phi1 Phi phi2 weight 159.595 107.686 188.347 0.2 152.461 69.8275 70.1477 0.2 16.3405 42.5481 345.104 0.2 47.8862 89.1992 259.787 0.2 0.600726 93.0248 199.439 0.2
% find the clusters and its centers tic; [c,centerRec] = calcCluster(ori,'method','hierarchical','numCluster',5); toc
Elapsed time is 4.706812 seconds.
% visualize result oR = fundamentalRegion(cs) plot(oR)
oR = orientationRegion crystal symmetry: 432 max angle: 62.7994° face normales: 14 vertices: 24
hold on plot(ori,ind2color(c)) caxis([1,5]) plot(center,'MarkerSize',10,'MarkerFaceColor','k','MarkerEdgeColor','k') plot(centerRec,'MarkerSize',10,'MarkerFaceColor','r','MarkerEdgeColor','k') hold off
plot 2000 random orientations out of 3000 given orientations
%check the accuracy of the recomputed centers min(angle_outer(center,centerRec)./degree)
ans = 11.2429 0.2440 0.1694 0.2656