doHClustering edit page

hierarchical clustering of rotations and vectors

Syntax

[c,center] = doHCluster(ori,'numCluster',n)
[c,center] = doHCluster(ori,'maxAngle',omega)

Input

ori orientation
n number of clusters
omega maximum angle

Output

c list of clusters
center center of the clusters

Example

% generate orientation clustered around 5 centers
cs = crystalSymmetry('m-3m');
center = orientation.rand(5,cs);
odf = unimodalODF(center,'halfwidth',5*degree)
ori = odf.discreteSample(3000);
odf = SO3FunRBF (m-3m → y↑→x)
 
  multimodal components
  kernel: de la Vallee Poussin, halfwidth 5°
  center: 5 orientations
 
  Bunge Euler angles in degree
     phi1     Phi    phi2  weight
  156.958 109.836 223.608     0.2
  9.33344 126.207 190.491     0.2
  197.878 76.1995 48.4488     0.2
  156.716 113.621 184.888     0.2
  151.332 117.797 66.3984     0.2
% find the clusters and its centers
[c,centerRec] = calcCluster(ori,'method','hierarchical','numCluster',5);
% visualize result
plot(ori,ind2color(c),'axisAngle')
plot 2000 random orientations out of 3000 given orientations
%check the accuracy of the recomputed centers
min(angle_outer(center,centerRec)./degree)
ans =
    0.3032    0.3298    0.2366    0.5450    0.1580