Evaluate an SO3FunHarmonic on ODFSections by using an equispaced grid along the other 2 Euler angles \[(\alpha_a,\beta_b,\gamma_c) = (\frac{2\pi a}{H_1},\frac{\pi b}{H_2-1},\gamma_c)\] where \(a=0,...,H_1-1\), \(b=0,...,H_2-1\) and \(c=0,...,S_{num}\).
Therefore we transform the SO(3) Fourier series to an usual Fourier series equivalent as in the function evalV2
. But we use an 2-variate equispaced FFT instead of the NFFT analogously to evalEquispacedFFT
Syntax
f = evalSectionsEquispacedFFT(SO3F)
f = evalSectionsEquispacedFFT(SO3F,'resolution',2.5*degree)
[f,nodes] = evalSectionsEquispacedFFT(SO3F,'resolution',[2*degree,2.5*degree])
f = evalSectionsEquispacedFFT(SO3F,oS)
Input
SO3F | SO3FunHarmonic |
oS | @ODFSection (phi2,gamma,phi1) |
Output
nodes | orientation |
f | values at this grid points |
Options
'resolution' | shape constant along Euler angles. (default = 2.5°) |
See also
SO3FunHarmonic.evalV2 SO3FunHarmonic.evalEquispacedFFT SO3FunHarmonic.eval