Explains how to compute and analyze misorientation distribution functions.
Lets import some EBSD data and reconstruct the grains.
mtexdata forsterite
grains = calcGrains(ebsd)
grains = grain2d Phase Grains Pixels Mineral Symmetry Crystal reference frame 0 16334 58485 notIndexed 1 4092 152345 Forsterite mmm 2 1864 26058 Enstatite mmm 3 1991 9064 Diopside 12/m1 X||a*, Y||b*, Z||c boundary segments: 147957 triple points: 11456 Properties: GOS, meanRotation
The boundary misorientation distribution function for the phase transition from Forsterite to Enstatite can be computed by
mdf_boundary = calcODF(grains.boundary('Fo','En').misorientation,'halfwidth',10*degree)
mdf_boundary = MDF crystal symmetry : Forsterite (mmm) crystal symmetry : Enstatite (mmm) Harmonic portion: degree: 25 weight: 1
The misorientation distribution function can be processed as any other ODF. E.g. we can compute the prefered misorientation via
[v,mori] = max(mdf_boundary)
v = 38.8766 mori = misorientation size: 1 x 1 crystal symmetry : Forsterite (mmm) crystal symmetry : Enstatite (mmm) Bunge Euler angles in degree phi1 Phi phi2 Inv. 82.4065 1.06577 187.671 0
or plot the pole figure corresponding to the crystal axis (1,0,0)
plotPDF(mdf_boundary,Miller(1,0,0,ebsd('Fo').CS))
Alternatively the uncorrelated misorientation distribution function can be computed by providing the option uncorrelated
mori = calcMisorientation(ebsd('En'),ebsd('Fo')) mdf_uncor = calcODF(mori)
mori = misorientation size: 98541 x 1 crystal symmetry : Forsterite (mmm) crystal symmetry : Enstatite (mmm) mdf_uncor = MDF crystal symmetry : Forsterite (mmm) crystal symmetry : Enstatite (mmm) Harmonic portion: degree: 25 weight: 1
Obviously it is different from the boundary misorientation distribution function.
plotPDF(mdf_uncor,Miller(1,0,0,ebsd('Fo').CS))
Let given two odfs
odf_fo = calcODF(ebsd('fo').orientations,'halfwidth',10*degree) odf_en = calcODF(ebsd('en').orientations,'halfwidth',10*degree)
odf_fo = ODF crystal symmetry : Forsterite (mmm) specimen symmetry: 1 Harmonic portion: degree: 25 weight: 1 odf_en = ODF crystal symmetry : Enstatite (mmm) specimen symmetry: 1 Harmonic portion: degree: 25 weight: 1
Then the uncorrelated misorientation function between these two ODFs can be computed by
mdf = calcMDF(odf_en,odf_fo)
mdf = MDF crystal symmetry : Forsterite (mmm) crystal symmetry : Enstatite (mmm) Harmonic portion: degree: 19 weight: 1
This misorientation distribution function should be similar to the uncorrelated misorientation function computed directly from the ebsd data
plotPDF(mdf,Miller(1,0,0,ebsd('Fo').CS))
Let us first compare the actual angle distribution of the boundary misorientations with the theoretical angle distribution of the uncorrelated MDF.
close all plotAngleDistribution(grains.boundary('fo','en').misorientation) hold on plotAngleDistribution(mdf) hold off
For computing the exact values see the commands calcAngleDistribution(mdf) and calcAngleDistribution(grains).
The same we can do with the axis distribution. First the actual angle distribution of the boundary misorientations
plotAxisDistribution(grains.boundary('fo','en').misorientation,'smooth')
Now the theoretical axis distribution of the uncorrelated MDF.
plotAxisDistribution(mdf)
For computing the exact values see the commands calcAxisDistribution(mdf) and calcAxisDistribution(grains).
DocHelp 0.1 beta |