round2Miller

(method of orientation)

find lattice alignements for arbitrary misorientations

Description

Given a misorientation mori find corresponding face normals n1, n2 and crystal directions d1, d2, i.e., such that mori * n1 = n2 and mori * d1 = d2.

Syntax

[n1,n2,d1,d2] = round2Miller(mori)
[n1,n2,d1,d2] = round2Miller(mori,'penalty',0.01)
[n1,n2,d1,d2] = round2Miller(mori,'maxIndex',6)

Input

mori

misorientation

Output

n1,n2,d1,d2

Miller

Example

% revert sigma3 misorientation relationship
[n1,n2,d1,d2] = round2Miller(CSL(3,crystalSymmetry('432')))
 
n1 = Miller  
 size: 1 x 1
 symmetry: 432
  h 1
  k 1
  l 1
 
n2 = Miller  
 size: 1 x 1
 symmetry: 432
  h 1
  k 1
  l 1
 
d1 = Miller  
 size: 1 x 1
 symmetry: 432
  u  0
  v  1
  w -1
 
d2 = Miller  
 size: 1 x 1
 symmetry: 432
  u -1
  v  1
  w  0
% revert back Bain misorientation ship
cs_alpha = crystalSymmetry('m-3m', [2.866 2.866 2.866], 'mineral', 'Ferrite');
cs_gamma = crystalSymmetry('m-3m', [3.66 3.66 3.66], 'mineral', 'Austenite');
mori = orientation.Bain(cs_alpha,cs_gamma)
[n_gamma,n_alpha,d_gamma,d_alpha] = round2Miller(mori)
 
mori = misorientation  
  size: 1 x 1
  crystal symmetry : Austenite (m-3m)
  crystal symmetry : Ferrite (m-3m)
 
  Bunge Euler angles in degree
  phi1  Phi phi2 Inv.
     0   45    0    0
 
 
 
n_gamma = Miller  
 size: 1 x 1
 mineral: Austenite (m-3m)
  h 1
  k 0
  l 0
 
n_alpha = Miller  
 size: 1 x 1
 mineral: Ferrite (m-3m)
  h 1
  k 0
  l 0
 
d_gamma = Miller  
 size: 1 x 1
 mineral: Austenite (m-3m)
  u  0
  v -1
  w -1
 
d_alpha = Miller  
 size: 1 x 1
 mineral: Ferrite (m-3m)
  u  0
  v  0
  w -1

See also

CSL