# round2Miller

(method of orientation)

find lattice alignements for arbitrary misorientations

## Description

Given a misorientation mori find corresponding face normals n1, n2 and crystal directions d1, d2, i.e., such that mori * n1 = n2 and mori * d1 = d2.

## Syntax

```[n1,n2,d1,d2] = round2Miller(mori)
[n1,n2,d1,d2] = round2Miller(mori,'penalty',0.01)
[n1,n2,d1,d2] = round2Miller(mori,'maxIndex',6)```

## Input

 mori misorientation

## Output

 n1,n2,d1,d2 Miller

## Example

```% revert sigma3 misorientation relationship
[n1,n2,d1,d2] = round2Miller(CSL(3,crystalSymmetry('432')))```
```
n1 = Miller
size: 1 x 1
symmetry: 432
h 1
k 1
l 1

n2 = Miller
size: 1 x 1
symmetry: 432
h 1
k 1
l 1

d1 = Miller
size: 1 x 1
symmetry: 432
u  0
v  1
w -1

d2 = Miller
size: 1 x 1
symmetry: 432
u -1
v  1
w  0
```
```% revert back Bain misorientation ship
cs_alpha = crystalSymmetry('m-3m', [2.866 2.866 2.866], 'mineral', 'Ferrite');
cs_gamma = crystalSymmetry('m-3m', [3.66 3.66 3.66], 'mineral', 'Austenite');
mori = orientation.Bain(cs_alpha,cs_gamma)
[n_gamma,n_alpha,d_gamma,d_alpha] = round2Miller(mori)```
```
mori = misorientation
size: 1 x 1
crystal symmetry : Austenite (m-3m)
crystal symmetry : Ferrite (m-3m)

Bunge Euler angles in degree
phi1  Phi phi2 Inv.
0   45    0    0

n_gamma = Miller
size: 1 x 1
mineral: Austenite (m-3m)
h 1
k 0
l 0

n_alpha = Miller
size: 1 x 1
mineral: Ferrite (m-3m)
h 1
k 0
l 0

d_gamma = Miller
size: 1 x 1
mineral: Austenite (m-3m)
u  0
v -1
w -1

d_alpha = Miller
size: 1 x 1
mineral: Ferrite (m-3m)
u  0
v  0
w -1
```