how to work with piezoelectricity

This m-file mainly demonstrates how to illustrate the directional magnitude of a tensor with mtex

On this page ... |

Plotting the magnitude surface |

Mean Tensor Calculation |

at first, let us import some piezoelectric contents for a quartz specimen.

CS = crystalSymmetry('32', [4.916 4.916 5.4054], 'X||a*', 'Z||c', 'mineral', 'Quartz'); fname = fullfile(mtexDataPath,'tensor', 'Single_RH_quartz_poly.P'); P = loadTensor(fname,CS,'propertyname','piecoelectricity','unit','C/N','interface','P','DoubleConvention')

P = tensor propertyname : piecoelectricity unit : C/N rank : 3 (3 x 3 x 3) doubleConvention: true mineral : Quartz (321, X||a*, Y||b, Z||c) tensor in compact matrix form: 0 0 0 -0.67 0 4.6 2.3 -2.3 0 0 0.67 0 0 0 0 0 0 0

The default plot of the magnitude, which indicates, in which direction we have the most polarization. By default, we restrict ourselves to the unique region implied by crystal symmetry

% set some colormap well suited for tensor visualisation setMTEXpref('defaultColorMap',blue2redColorMap); plot(P) mtexColorbar

but also, we can plot the whole crystal behavior

close all plot(P,'complete','smooth','upper') mtexColorbar

Most often, the polarization is illustrated as surface magnitude

close all plot(P,'3d')

Note, that for directions of negative polarization the surface is mapped onto the axis of positive, which then let the surface appear as a double coverage

Quite a famous example in various standard literature is a section through the surface because it can easily be described as an analytical solution. We just specify the plane normal vector

`plot(P,'section',zvector)`

so we are plotting the polarization in the xy-plane, or the yz-plane with

`plot(P,'section',xvector)`

Let us import some data, which was originally published by Mainprice, D., Lloyd, G.E. and Casey , M. (1993) Individual orientation measurements in quartz polycrystals: advantages and limitations for texture and petrophysical property determinations. J. of Structural Geology, 15, pp.1169-1187

fname = fullfile(mtexDataPath,'orientation', 'Tongue_Quartzite_Bunge_Euler'); ori = loadOrientation(fname,CS,'interface','generic' ... , 'ColumnNames', { 'Euler 1' 'Euler 2' 'Euler 3'}, 'Bunge', 'active rotation')

ori = orientation size: 382 x 1 crystal symmetry : Quartz (321, X||a*, Y||b, Z||c) specimen symmetry: 1

The figure on p.1184 of the publication

Pm = ori.calcTensor(P) plot(Pm) mtexColorbar

Pm = tensor propertyname : piecoelectricity rank : 3 (3 x 3 x 3) doubleConvention: true tensor in compact matrix form: *10^-2 -10.48 34.2 -23.72 -32.75 -64.24 -26.18 -18.02 -3.15 21.17 62.42 29.67 44.39 -41.35 40.44 0.91 32.48 -23.42 6.47

close all plot(Pm,'complete','upper') mtexColorbar setMTEXpref('defaultColorMap',WhiteJetColorMap)

DocHelp 0.1 beta |